
CS106B Handout 17A

Winter 2017 February 21, 2017

Alternate CS106B Midterm Exam

This exam is closed-book and closed-computer. You may have a double-sided, 8.5” × 11” sheet of
notes with you when you take this exam. You may not have any other notes with you during the
exam. You may not use any electronic devices (laptops, cell phones, etc.) during the course of this
exam. Please write all of your solutions on this physical copy of the exam.

Unless otherwise indicated as part of the instructions for a specific problem, comments will not be
required on the exam. Uncommented code that gets the job done will be sufficient for full credit on
the problem. On the other hand, comments may help you to get partial credit if they help us deter-
mine what you were trying to do. You do not need to worry about efficiency unless a problem
specifically requires an efficient solution.

This exam is “self-contained” in the sense that if you’re expected to reference code from the lec-
tures, textbook, assignments, or section handouts, we’ll explicitly mention what that code is and
provide sufficient context for you to use it. There’s a reference sheet at the back of the exam detail -
ing the library functions and classes we’ve discussed so far.

SUNetID:

Last Name:

First Name:

I accept both the letter and the spirit of the Honor Code. I have not received any unpermitted assis -
tance on this test, nor will I give any. I do not have any advance knowledge of what questions will
be asked on this exam. My answers are my own work. Finally, I understand that the Honor Code
requires me to report any violations of the Honor Code that I witness during this exam. I will not
discuss this exam with anybody until 10PM on Tuesday, February 21st.

(signed) ___

You have three hours to complete this exam. There are 40 total points.

Question Points Graders

(1) Container Classes / 8

(2) Recursive Enumeration / 8

(3) Recursive Optimization / 8

(4) Recursive Backtracking / 8

(5) Big-O and Efficiency / 8

/ 40

You can do this. Best of luck on the exam!

2 / 15

Problem One: Container Classes (8 Points)
A Matter of Context (Recommended time spent: 25 minutes)

A recent issue of the New York Times profiled Google’s new translation system. It’s powered by a tech-
nique called word2vec that builds an understanding of a language by looking at the context in which each
word occurs.

Imagine you have a word like “well.” There are certain words that might reasonably appear immediately
before the word “well” in a sentence, like “feeling,” “going,” “reads,” etc., and some words that that are
highly unlikely to appear before “well,” like “cake,” “circumspection,” and “election.” The idea behind
word2vec is to find connections between words by looking for pairs of words that have similar sets of
words preceding them. Those words likely have some kind of connection between them, and the rest of
the logic in word2vec works by trying to discover what those connections are.

Your task is to write a function

Map<string, Lexicon> predecessorMap(istream& input);

that takes as input an istream& containing the contents of a file, then returns a Map<string, Lexicon>
that associates each word in the file with all the words that appeared directly before that word. For exam-
ple, given JFK’s quote

“Ask not what your country can do for you; ask what you can do for your country,”

your function should return a Map with these key/value pairs:

 "not" : { "ask" }
 "what" : { "not", "ask" }
 "your" : { "what", "for" }
"country" : { "your" }
 "can" : { "country", "you" }
 "do" : { "can" }
 "for" : { "do" }
 "you" : { "for", "what" }
 "ask" : { "you" }

Notice that although the word “ask” appears twice in the quote, the first time it appears it’s the first word
in the file and so nothing precedes The second time it appears, it’s preceded by some whitespace and a
semicolon, but before that is the word “you,” which is what ultimately appears in the Lexicon.

Some notes on this problem:

• You can assume that a token counts as a word if its first character is a letter. You can use the
isalpha function to check if a character is a letter.

• Your code should be case-insensitive, so it should return the same result regardless of the capital-
ization of the words in the file. The capitalization of the keys in the map is completely up to you.

• Your code should completely ignore non-word tokens (whitespace, punctuation, quotation marks,
etc.) and just look at the words it encounters.

• It is not guaranteed that the file has any words in it, and there’s no upper bound on how big the file
can be.

• You’ll almost certainly want to use TokenScanner here. Don’t worry about setting up your
TokenScanner so that it skips over whitespace or treats single quotes as letters – you can do that
if you’d like, but you’ve already proven in Assignment 1 that you know how to do that.

3 / 15

Map<string, Lexicon> predecessorMap(istream& input) {

4 / 15

(Extra space for your answer to Problem One, if you need it.)

5 / 15

Problem Two: Recursive Enumeration (8 Points)
Task Planning (Recommended time: 45 minutes)

Imagine you have some collection of tasks that need to be done. Some of those tasks might depend on
one another. For example, you might be navigating the CS Core, shown here:

CS106A

CS106B

CS103 CS109 CS161

CS107 CS110

Here, the arrows indicate prerequisites. CS106B has CS106A as a prerequisite, CS110 has CS107 as a
prerequisite, CS109 has both CS106B and CS103 as prerequisites, and CS106A has no prerequisites. As-
suming you can only take one CS class per quarter, what possible orderings are there for these classes that
don’t violate any prerequisites? Your task is to write a function

void listLegalOrderingsOf(const Map<string, Set<string>>& prereqs);

that takes as input a Map representing the prerequisite structure, then lists all possible orders in which you
could complete those tasks without violating the prerequisites. The prereqs map is structured so that
each key is a task and each value is the set of that task’s immediate prerequisites. For example, the CS
Core would be represented by the following map:

 "CS103" : { "CS106A" }
"CS106A" : { }
"CS106B" : { "CS106A" }
 "CS107" : { "CS106B" }
 "CS109" : { "CS103", "CS106B" }
 "CS110" : { "CS107" }
 "CS161" : { "CS109" }

Given this prerequisite structure, your function would then print out all of the following:

CS106A, CS106B, CS107, CS110, CS103, CS109, CS161
CS106A, CS103, CS106B, CS109, CS161, CS107, CS110
CS106A, CS106B, CS107, CS103, CS109, CS161, CS110

(… many, many more …)

Some notes on this problem:

• Every task will be present in the Map. A task with no prerequisites will be represented as a key
whose value is an empty Lexicon, as is the case for CS106A in the above example.

• You can assume that the tasks actually can be legally ordered and that there won’t be any weird
cases where a set of tasks all mutually depend on one another.

• Your function must not list off the same ordering twice.
• Your function must not work by simply generating all possible permutations of the tasks and then

printing out just the ones that obey all the constraints. Along the lines of the Disaster Preparation
problem, that would just be too inefficient.

• Your solution must be recursive, since that’s kinda what we’re trying to test here. ☺
• Your output doesn’t have to exactly match our format. List off the orderings in whatever format

you’d like. In case it helps, you can directly print a Map, Set, Vector, or Lexicon to cout.

6 / 15

void listLegalOrderingsOf(const Map<string, Set<string>>& prereqs) {

7 / 15

(Extra space for your answer to Problem Two, if you need it.)

8 / 15

Problem Three: Recursive Optimization (8 Points)
Taking Care of Business (Recommended time: 45 minutes)

You are working on a team project with a number of other folks. That project has a number of tasks that
need to get completed, and fortunately they’re all independent of one another. The project is completed as
soon as all the tasks have been done, and you’re interested in finding the fastest way to accomplish this.
For example, if one person ends up working for 16 hours, another for 2 hours, and a third for 5 hours, it’ll
take 16 hours for the project to be completed, since you’ll have to wait for the person who has 16 hours’
worth of tasks to finish their work. On the other hand, if one person ends up working for 7 hours, another
for 8 hours, and the third for 7 hours, then the project will be completed in 8 hours, since that’s the length
of time the longest person needs to complete their tasks.

Imagine that each task is represented as this handy struct:

struct Task {
string name; // The name of the task
int hoursNeeded; // How long it takes to complete.

};

Write a function

Map<string, Vector<Task>> fastestAllocationOf(const Set<string>& people,
 const Vector<Task>& tasks);

that takes as input a set containing the names of all the people on the team along with the list of all the
tasks to complete, then returns a Map<string, Vector<Task>> assigning people (by name) to the list of
tasks they need to complete. The particular schedule you return should be chosen so that the very last per-
son in that schedule to finish finishes as early as possible.

Some notes on this problem:

• There will always be at least one person in the group.

• If there are multiple schedules that all have equally good completion times, you can choose any
one of them to return.

• Tasks never take a negative amount of time to complete.

• Your solution needs to use recursion – that’s kinda what we’re testing here. ☺

• If someone is assigned no tasks, you can either include their name as a key in the map associated
with an empty Vector, or you return a map that doesn’t associate their name with anything,
whichever you find easier.

9 / 15

struct Task {
string name; // The name of the task
int hoursNeeded; // How long it takes to complete.

};

Map<string, Vector<Task>> fastestAllocationOf(const Set<string>& people,
 const Vector<Task>& tasks) {

10 / 15

(Extra space for your answer to Problem Three, if you need it.)

11 / 15

Problem Four: Recursive Backtracking (8 Points)
Waste Not, Want Not (Recommended time: 45 minutes)

In a recent study, the USDA Economic Research Service determined that roughly 30% of all the food
grown in the United States is wasted. That’s over $150 billion in wasted food, so much in fact that wasted
food in landfills is the third biggest source of carbon emissions in the United States. Being the responsible
person that you are, and being a recursion veteran, you decide to see if you can find a way to plan your
own meals so that you waste as little food as possible.

Let’s imagine that you have your pantry represented as a Map<string, int>, where the key is the name
of whatever ingredient is in your pantry ("black beans", "potatoes", "barberries", etc.) and the
value is how much of that ingredient you have lying around (in some arbitrary choice of units).

You also have a list of recipes you can make. Each recipe is represented as a struct:

struct Recipe {
 string name;
 Map<string, int> ingredients;
};

Here, the ingredients are also represented as a Map<string, int> mapping ingredients to how many
copies of that ingredient you need for the recipe. For example, the delicious Persian rice dish adas polow,
which needs a lot of rice, some lentils, and a little saffron, might look like this:

{{"rice", 4}, {"lentils", 2}, {"saffron", 1}}

A recipe for ful medames, the national dish of Sudan, might have these ingredients:

{{"fava beans", 3}, {"oil", 2}, {"cumin", 1}}

You’re interested in planning out your meals for the week and want to see whether it’s possible to make
some combination of dishes that collectively uses up everything in your pantry. To do so, your job is to
write a function

bool canGetZeroWaste(const Map<string, int>& pantry,
 const Vector<Recipe>& recipes,
 Vector<Recipe>& foodPlan);

that takes as input your pantry contents and a list of all the recipes you know how to make, then returns
whether it’s possible to find list of recipes to make that collectively use up everything in your pantry. If so,
you should fill in the foodPlan argument with a list of all the meals you would make.

As an important note on this problem, you should account for the case where you choose to make mul-
tiple copies of the same recipe. For example, you may find that the best way to exhaust your pantry would
be to make ten batches of adas polow and three batches of ful medames. If you do make multiple copies
of the same recipe, you should include an appropriate number of copies in the foodPlan outparameter.

You can assume that foodPlan is empty when the function is first called and the contents of foodPlan
are irrelevant if your function returns false. You can also assume you have access to a function

bool haveIngredientsFor(const Recipe& r, const Map<string, int>& pantry);

that takes as input a recipe and the contents of a pantry, then returns whether the pantry has the ingredi-
ents necessary to make the recipe.

Oh, and you actually need to use recursion here. ☺

12 / 15

struct Recipe {
 string name;
 Map<string, int> ingredients;
};

/* Given a recipe and the contents of a pantry, returns whether there are
 * enough ingredients in the pantry to make the recipe. You do not need to
 * implement this function.
 */
bool haveIngredientsFor(const Recipe& r, const Map<string, int>& pantry);

bool canGetZeroWaste(const Map<string, int>& pantry,
 const Vector<Recipe>& recipes,
 Vector<Recipe>& foodPlan) {

13 / 15

(Extra space for your answer to Problem Four, if you need it.)

14 / 15

Problem Five: Big-O and Efficiency (8 Points)
Some Sort of Sort (Recommended time: 20 minutes)

Let’s suppose that you are working with some code that uses a mystery sorting algorithm. You run that
sorting algorithm on three different classes of inputs: inputs that are already in sorted order, inputs that
are in reverse-sorted order, and inputs where the elements are in a totally random order. You measure the
amount of time it takes for the sorting algorithm to complete on different inputs of this sort and get back
the following data table:

Input Size Sorted Order Random Order Reverse Order

10,000 271μs 0.39s 0.78s

20,000 428μs 1.53s 3.08s

30,000 614μs 3.47s 7.05s

40,000 760μs 6.13s 12.3s

50,000 876μs 9.54s 19.4s

60,000 1030μs 13.7s 28.0s

70,000 1130μs 18.8s 38.0s

80,000 1350μs 24.4s 51.9s

This question explores what you can infer from this data. Note that the data in the “Sorted Order” column
are in microseconds and the data in the other two columns are in seconds.

i. (3 Points) Based on the data available to you, what is your best guess about the big-O runtime of
this sorting algorithm on an input consisting of n elements in sorted order? Justify your answer in
at most fifty words.

ii. (3 Points) Based on the data available to you, what is your best guess about the big-O runtime of
this sorting algorithm on an input consisting of n elements in reverse-sorted order? Justify your
answer in at most fifty words.

iii. (2 Points) Based on the data available to you, is this algorithm most likely selection sort, insertion
sort, mergesort, or something else? Justify your answer in at most fifty words.

15 / 15

C++ Library Reference Sheet
Lexicon
 Lexicon lex; Lexicon english(filename);
 lex.addWord(word);
 bool present = lex.contains(word);
 bool pref = lex.containsPrefix(p);
 int numElems = lex.size();
 bool empty = lex.isEmpty();
 lex.clear();

Map
 Map<K, V> map = {{k1, v1}, … {kn, vn}};
 map[key] = value; // Autoinsert
 bool present = map.containsKey(key);
 int numKeys = map.size();
 bool empty = map.isEmpty();
 map.remove(key);
 map.clear();
 Vector<K> keys = map.keys();

Stack
 stack.push(elem);
 T val = stack.pop();
 T val = stack.top();
 int numElems = stack.size();
 bool empty = stack.isEmpty();
 stack.clear();

Queue
 queue.enqueue(elem);
 T val = queue.dequeue();
 T val = queue.peek();
 int numElems = queue.size();
 bool empty = queue.isEmpty();
 queue.clear();

Set
 Set<T> set = {v1, v2, …, vn};
 set.add(elem);
 set += elem;
 bool present = set.contains(elem);
 set.remove(x); set -= x; set -= set2;
 Set<T> unionSet = s1 + s2;
 Set<T> intersectSet = s1 * s2;
 Set<T> difference = s1 – s2;
 T elem = set.first();
 int numElems = set.size();
 bool empty = set.isEmpty();
 set.clear();

Vector
 Vector<T> vec = {v1, v2, …, vn};
 vec.add(elem);
 vec += elem;
 vec.insert(index, elem);
 vec.remove(index);
 vec.clear();
 vec[index]; // Read/write
 int numElems = vec.size();
 bool empty = vec.isEmpty();
 vec.subList(start, numElems);

TokenScanner
 TokenScanner scanner(source);
 while (scanner.hasMoreTokens()) {
 string token = scanner.nextToken();
 …
 }
 scanner.addWordCharacters(chars);

string
 str[index]; // Read/write
 str.substr(start);
 str.substr(start, numChars);
 str.find(c); // index or string::npos
 str.find(c, startIndex);
 str += ch;
 str += otherStr;
 str.erase(index, length);

ifstream
 input.open(filename);
 input >> val;
 getline(input, line);

GWindow
 GWindow window(width, height);
 gw.drawLine(x0, y0, x1, y1);
 pt = gw.drawPolarLine(x, y, r, theta);

GPoint
 double x = pt.getX();
 double y = pt.getY();

General Utility Functions
 int getInteger(optional-prompt);
 double getReal(optional-prompt);
 string getLine(optional-prompt);
 int randomInteger(lowInclusive,
 highInclusive);
 double randomReal(lowInclusive,
 highExclusive);
 error(message);
 x = max(val1, val2); y = min(val1, val2);
 stringToInteger(str); stringToReal(str);
 integerToString(intVal);
 realToString(realVal);

